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APPLICATION OF DUALITY METHODS IN PROBLEMS OF
OPTIMIZING THE SHAPE OF ELASTIC BODIES *

L.V. PETUKHOV and S.I. REPIN

A method is proposed for obtaining estimates of the magnitude of the
global extremum in plate and three-dimensional body shape-optimization
problems. This enables an estimate to be made of the ultimate possibilities
of optimization. In certain cases, a control is constructed successfully
for which the values of the cbjective functional will be close, and
sometimes even equal, to the magnitude of the global extremum.

1. Free vibrations of thin plates. Let there be a domain £ & R' with piece-
wise-smooth boundary T =T (J Ty |JTs. The frequency @ of free vibrations of a plate of
thickness h is given by the following relations:

of = min ® (h, w); O (k, w) = I (h, VYT (h, ) .1)
I (h, w) = §.Dh'\p (@y) 32 T (h, w) = pho (z, y) IR
Q

D=E({l2(1~—+), o=u*, p=(dwp—2(1—v)
M (wizxwvyy - wzvxy)
V=w|lveW?Q); v=v,=0o0nT;, v=0 onTy
Here E is Young's modulus, v is Poisson's ratio, p is the density, w is the deflection,
z, y are Cartesian coordinates of a point, and v,, denotes the derivative along the normal

to the contour I'. The optimization problem is as follows: it is required.to find A* and w*
such that

® (k*, w*) = sup inf ® (h, w) #.2)
He={heLa @ |{hdR=hymesQ, b <h <ha}

Q
hy >hg>h1 >0

where mes Q denotes the Lebesgue measure of the domain Q.

It is known that in problems of this kind, the existence of generalized solutions /5,6/
is possible in addition to piecewise-smooth solutions /1-4/. Moreover, problem (1.2) 1is
non-convex; consequently, different numerical algorithms only result in locally optimal
solutions /7,8/. However, attempts can be made to find the function k& H for which the
value of the cbjective functional is less than the supremum by a certain small quantity e.
For this it is necessary to estimate the value of the supremum, as can be done by using the
dual problem.

The following problem is called the dual of the original /9/: Find h*, w* such that

@ (h*, w*) = inf sup D (h, w) (1.3)
waV MaH
The following inequalities are cbviously valid
sup int® (h, w) < inf sup © (h, w) 1.4)
wavV haH hraH wav

and can be used to construct upper bounds for the magnitude of the supremum in problem (1.2).
We use the notation
Q=3up ® (h,wy), sV (1.5)
heH

*prikl.Matem,Mekhan.,Vol.48,5,830-838,1984



601

By virtue of (1.3) and (1.4), here Qo is the upper bound. To find Q, it is necessary
to comstruct a function kg such that @ (g, wy) = Q.
Assertion 1. 'The intermediate regime Ak, <<h<{ h, is impossible in problem (1.5).

Proof. Let hy = hy{z, y) be the solution of (1.5), We assume that there is a subdomain
Q0 mesQ >0 such that ky <<ho<hy if (2, %) S . We choose &, and £ such that
Q=0,"U Q" xA N " = @, mes Q' = mes Q, and we construct the function hy. We set hy ==
RoinQ N\ Qs kg =hy— 6 in Qi hy =ho+ & in Q" (6 = const).

It can be shown that

@ (e, we) — D (hy, Wo) = [-~BA J- 38°TIIy 4 TT6°%] X [T2 — 8TT, (1.6)
A = I,0I — 3ILT, Il = 1T (ho, wo), T = T (ho, Wo)

Ti={ode— { gdn, M= nopan— { nppao
&' 'y & 8,
M= (hewd@ Ty={ vdo— { pdo
o o 2"

If A =0 then for small & the right side of (1.6) is positive. If Awk0, then by
selecting 8 >0 or 8§<{0 depending on the sign of A, we obtain that the right side of
(1.6) can be made positive for sufficiently small 8. This contradicts the fact that k, is a
solution of (1.5).

Corollary. We introduce a new control function p = (hy = h)/(hy=DB)? (=1 4if h=h
and p=0 if h=~h,). Then

Qo = sup @ (p, wy) .7
neM

D (o wo) = § (Ap + B) 9 (wo) dR x [§ (C + D)o (w2
4 =h1l__h‘8’ B ﬂhg’, c ghl_h” D =h'

Here M is the set of functions which can only take values of 0 or 1 at each point of the
domain £ and satisfies the isoperimetric condition

§(uk1+<i—p)h,>dcz=h,mesn

Let N denote the closure of the set M in a #-weak topology of the space L. ()

N={pel.@o<p<t §(ph; “+ (1 — ) he) dB2 == hy mes 2
Evidently
Qo= sup ® (n, w,) 1.8)
neN

Assertion 2. Problem (1.8) has a solution, i.e., a function pye& N exists on which the
functional @ achieves its exact upper bound.

Proof. Let ({M,} be a maximizing sequence, i.e., ® (U, W)~ @, as nm=->00. It is
uniformly bounded, consequently, a subsequence can be extracted that is also maximizing and
convergent to a certain function W, & N in s~weak topology L. /9/. Passing to the limit
in (1.8), we have @ (u,,wo)—® (jy, Wy), =~ 00, from which there follows that @ (ug, wy) = Qo

Assertion 3. The function W, that yields a maximum of the functional @ (u, w,) takes
only the two values 0 and 1, where if Q,, §; are, respectively, the subdomains where p, =20

and po =4, then
R >RENVE@NeQVENEQ (1.9)
R (u, v) = (u, v) — Qo9 (u, V)/{h;* + hhy + £o®)

The proof that p, does not take on intermediate values is analogous to the proof of
Assertion 1.
We consider two sequences of subdomains {0,*} = Q) {0, } = Qo mes o =mes 0, (k =1,2,...),
where
(1));+ &= S (xv Y, pk)v mk- = S (Ev LD pk)u Py — 07 k— oo

S vp)={z, e Q|(—u+ {¥—PLp}

We construct the sequence of controls



602

Poin R\ (0" | 0f7) == Ry
mr=1 0 ine,*
1 in Wk-

If pp, is a solution of prchklem (1.8), the inequality

(D (p'ov wo) e d’ (p'kv wo) ;; 0
should be satisfied for any k, from which it follows that

T'A(ay* —ay") = ITC (by* — by") > Liay*by*s ax*by”s ax"by*s axby™) (1.10)
at= § 90 o= { 90 b'={ a0 b= | gan
ot e wy -

"= Cto+D)pdR, I'={ (4n+B)ydn
S 9
(L is a linear function of its arguments). Dividing both sides of inequality (1.1Q) by
mes ®,* and passing to the limit as % — o0, we abtain (1.9).

Remark. 1Inequality (1.9) enables us to construct the function g We choose a certain
value of @, we substitute it into (1.9) in place of @Q,, and we construct a corresponding
function p. We calculate @Q* = (i, wy)} @, corresponds to the greatest of those values of

Q@ for which @ =¢@% and can be found by standard methods for finding the roots of
transcendental squations.

Examples. We consider a rectangular plate with sides a4 and b, and let A== h(z). The
sides y=0,% of the plate are freely supported, while z= 0,4 are free, Problem {l,1) is
reduced to the following

a=infd Gk F); OHh Fy=T/T (1.1
P o
I =S(mgF" — ¥yl 4 2mytiFYdz, T = SM’%
°

°
sy = DA (F* — aWF), my == DAY (" wa GAF), myy = DA? (1 — V)F*
U= {ue Wyt[0, al| u (D) == uls) =0}, a=nnlb

It is necessary to find a quantity &, a H, such that
@ (hy) == hséxg o* (h) €1.12)

H={hel [0 ol I S h s §M==f»-}
o

Using (1.9) we obtain the following estimate of the supremum (¢ =10=1)
Qy = 1t (A2 g+ Byhy — RyPhy — lgy?)

It turns out that elements exist in the set #H, for which the value of the objective
functional is close to &g To show this, the formulation of problem (1.12) must be altered
somewhat. As already mentioned, problem {1.12) may not even have a solution. To eliminate
this singularity, it is necessary to perform a G-closure of the boundary value problem (1.11)
/10/. Therefore, a new expanded (relaxation) problem-of optimization can beé constructed
whoge solution exists and can be approximated to the functional with any degree of accuracy
by elemeénts of the original set H,. If we limit ourselves to an examination of controls
taking on just two values h, and h, then the G-glosure of (l.1l) results in the following
variaticnal problem

@
ot=inf®R, F); OQ F) =1 [S (Mg A4 (1 — A hy) F2 az]“ (1.13)
[}
Mg = by (F" — GWF), myy == 2bygF’, myy = vbyF” — a%b,,F
by = DhPAS (M3 4 (1 — RYAFTTY, buy== B (1 — v} (AR (1 —R) )
by = (1 = V)byg -t Vibey
The expanded optimization problem is to seek a X,= & such that
2 = * (A 1.14
@? (hy) sup @ ) (1.14)
Here A is a new control function which is related to h as follows. If i=1 in a
certain intexval D, = {z;, x, + A}, then hiz)=hy, ze&Dy; 1f A(@) =0, then h(2)=hy za& Dy,

if A = 0.5, say, then this corresponds to an infinitely frequent uniform alternation of the
thicknesses &, and bh,.
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To obtain the lower bound of the supremum we take a certain value A{zx)e AN and solve
problem (1.13), We set A (z)=0.5. We calculate the corresponding value of the frequency
Q. We let w, denote the frequency for a constant thickness plate of the same weight, and
let a=b=1,hy=1. Then for », =07 and hy,=1.3, we have wJap= 1.12, go/00p = 1.18; for i = 0.5,
hy = 1.5 we have o,/op = 1,30, g/wp = 1.38, and for h; =03, h, = 1.7 we have «,/up =154, g/0p = 1.65,

where g, =V Q. It is seen that values of the gains are fairly close to the upper bound of
the supremum.

We examine the following sequence of contrels {(mle Hyk=1,2,..., h=h if ze[(i—1)A,
iA); h=h,, 1if rze [id, (i+1)A), A=1/k, i=1,2, ..., k— 1. We let w;y denote the value of the
frequency corresponding to the function k. By virtue of the properties of the expanded
problem, we have oy — ®, as k-—ooc. Hence, for sufficiently large k the ratio /e, is

close to o,/0, while the value of the objective functional for the control ke« H, is close
to the magnitude of the global supremum,.

Analogous estimates can be obtained in other problems also, when the control depends on
one coordinate. For instance, we consider a long rectangular plate (s3> b) with freely sup-
ported edges and we let h=h(z). As w, we select the function

.
sin—5-—, r<z
wo=F(z)sinay; Fr)={1, z2<lzla—z
. nb—2x)
sin—5—, zZa—12
In this case

Qo __ b (142732 — 200+ a [hy® + ho? - habs — hyPhy — hoby¥] 71
P]

@, hy — 2hy <4 azt
w2 buath™? 4 2 (vbes 4 bro) + bpb2 2
CX h? (ba™! 4 ab~1y2

For instance, for & =05, hy=1.5, hy=1.0, ble = 20 we obtain Qy/w,® =2.28, ndu,®=1.61, and
©,%/Qy = 0.71. Therefore, the value of the frequency obtained is not less than 84% of the
upper bound. The problem can also be considered for an annular plate of radii r and R(R>1)
when the thickness depends only on the angular coordinate a. It turns out that for r/R >
0.7 -- 0.8 a plate with uniformly arranged radial ribs will also ensure a solution close to the
globally optimal one.

In two-dimensional problems, when &=k (z, y), inequality (1.9) permits rapid construction
of h, and calculation of @, for a given function e, Thus, @y/up?=2.21 is obtained for the
case when &k, = 0.5, hy=1.5, hg=1 (all sides of a square plate freely supported), while we
have Qy/wp? =145 for &k, = 0.7, k=13, hy=1.0.

Therefore, the upper boundary of the magnitude of the parameter being optimized can be
established at once. It should be kept in mind that the estimate obtained by such a method
can turn out to be quite excessive either because of the unsuccessful choice of w, or because
of the presence of an unavoidable gap between the direct and dual problems in inequality (1.4).

2. Formulation of optimization problems for a three-dimensional elastic
medium, Let the domain Q C R® be filled by an elastic medium consisting of two materials
that are characterized by the elastic constant tensors 6a = {8a;;,}, the densities 0p, and the
torsion yield points 80, where 6 =0,>0(0,<1) or 8 =1. Here and everywhere later,
the Roman subscripts run through the values 1 - 3. The body force vector f(z) = {f; (z})) is
given in the domain Q, where z = {z;} are Cartesian coordinates of the points in Q. we
consider the boundary of £, which we shall denote by T, as consisting of two parts I,
and Tr (' =T, |J T'r), where the displacement vector u = {u;} =0 is given on the former, and
the surface loads vector F = {F;} on the latter. The quantities a;;;. p, 0y, 8, are assumed
to be independent of the coordinates z;.

We expand the initial formulation of the problem somewhat. We assume that there is a
hypothetical inhomogeneous elastic medium for which 0< 6,0 (z) < 1.

We now specify the quantities introduced above. Let Q be an intrinsically regular
domain /11/. We introduce the sets

6={0csLls (R 108, <O@ LT
U={ulucH @, u =0 on I}
where H'(Q) is the S.L. Socbolev space /12/. We will assume that
fie L, (Q), Fi s L, (Ty)

For any fixed 0 = O the displacement u = U of the points of Q is governed by the
integral identity /12/



S (Ba e %0 — vif i) dx — S Fw,dT =0 (2.1)
e T'p

gy= (i, ; + uj, /2 Vo=U, %pp==(vk, 1+ V1,12

where e = {e;;}, ¥ = {%y;} are strain tensors (-),; is the derivative with respect to the
coordinate z;, summation between 1l and 3 is assumed over the repeated subscripts here and
everywhere later. If the solution u is found, then the stress tensor o = {0y} = {8a,.2)}
can be determined.

The constraint by;,04;0,, < 0%, on the stress for almost all z&=Q is often encountered
in optimal design problems, from which a constraint on the strain evidently results

€ty K O 2.2)
for almost all ze< Q, where b = {byy},¢ = {ci;} are tensors determining the invariants in
the constraints on the stress and strain, cCijy = bpgreijpg@iirs:

We will now formulate two optimal control problems: the problem of minimizing the mass
of material under constraints on the stress (problem W)

inf § Bpdz 2.3)

for V0 =08, Vu= U satisfying (2.1) and (2.2), and the problem of minimizing the elastic
strain energy under constraints on the material mass (problem P)

inf§ - Baynitisen dz 2.4)
for Vue= U satisfying the equality (2.1) and
Vo d— {BES|§9pdx=pomesQ. 8y < po./ p< 1}
3. Dual estimate in problem Ww. We construct the Lagrange functional
La, 8, v, p)= § (Bp + 8@y 185Kt & WCijpBisER — (3.1)

vf—po)dz — § Fudl, Vu,veU, VoE©
Tr

VpmeM={ps L (Q) |u>0}

We examine two extremal problems for the functional L.
The first

inf L° (u,9), Vus U, V6 = 8; L° (4, 0) =sup L, Vv & U, Vp=sM

is equivalent to problem W.
The second
sup Ly (v, p), Vo U, VueM; Ly (v, p) = inf L, Ve, & L (Q), VB = O
is the dual to problem # and can be used for the lower bound of the value (2.3).
Indeed, from the evident inequalities

Lo (s Lo (0y p) < inf L< 3.2
o(v “)Qoet,sr?u’iem 0( ll)\ vetsf‘.lE—EMueUl,neee oS ( )

inf sup L= inf L°(u,0)
usU, 020 val, neM uel, 020

it follows that the value of L, (v, p) yields the lower bound for (2.3).

We will now construct the functional L, (v, p). For each fixed v and p the integrand in
the first integral in (3.1) is a convex function of ¢, hence, it is necessary to minimize
the function

@ (&) == Peijni8is€r + 0a; ;58 %51

In the general case the tensor pc¢ is not positive-definite, but only positive,

consequently, the necessary and sufficient condition for a minimum

2ue e + Qe =0, VvEU, VpesM (3.3)

cannot possibly be solved directly for g.
In fact, we examine the constraint on the shear stress intensity (the Mises yield
condition) /13/ for an isotropic material as the strength condition. Then

@ (g) = 4GZH ((311 — 89) + (B2e — 533)2 + (egs — &1)* + (34)
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6 (g3 + €35® + €35))/6 + Baypnpei;

Conditions (3.3) for (3.4) take the following expanded form
4G (3e;; — &gy — Eyz — £99)/3 + Bayimy = 0 (3.5)
4G%pey; + Baypgng = 0 (i 7 )

from which it follows that if s, 4 s + %gy 5= 0, then inf, @ () = —o0, as is achieved for
€1 = Bgy = €33 = ~-00. Therefore, the function ¢ (8) only takes finite values under the condition
Uyy + Hap + Hgy = 0 (3.6)

Under condition (3.6) the solution (3.5) can be found in the form
&y = D — Ba;yn/(4G%p) 3.7
&; = —0a; M/ (4G%p) (i 5= )

where D is an arbitrary constant, Substituting (3.7) into (3.4) and taking (3.6) into account,
we obtain

infe p () = % l';— (%11 — %a2)® + ‘16‘ (%22 — %as)* + (3.8)
—;"("aa—%u)’— xy — 7‘::—":3—”32—";.3'—”31] = '?T’ P (z)
P (36) = dyjp%ih

Analysis shows that the tensor d = {d;,} is positive-definite. At points at which p =0
the function ¢ (e) dJegenerates into a linear function and inf @ (¢) = —oo, Ve;; & L, (Q).
We substitute (3.8) into (3.1), then

2, L=§ [ 80— - 900 — vifs —pos? | dz — rS, F;dl

after which we find

Ly (v, w = { [0 % w) — vif; —pogtldz — § Fodr @.9)
Q Tr
ol )_{P—lb(ﬂ)/p, B << (1 + 60) ¥ (%)/p
"W 00p — 002 (/e m> (1 + 80) B 0)/p

For fixed v and :'. the value of L, (v, p) yields a lower bound of the infimum of the
initial problem (see the inequalities (3.2)). To improve this estimate, (3.9) should be
maximized. The functional (3.9) is independent of the value 0 >8, and 6 <{1, therefore, the
presence of two materials with 6 = 8, and 6 = 1 could be assumed in Sec. 2.

Example. We consider a cube with edge ¢ loaded on two opposite faces z3;=0 and z3=e
by compressive forces of constant intensity F, which satisfies the inequalities 6,< F (Vo)<
1 obtained from the equal-strength condition in the sense of the Mises condition /3/ for
6=0, and 8=1. The optimal control and the corresponding mass of the material are
8 = F (V3007 my = peF (Y30,

We now obtain the lower bound by using (3.9). We set v =—az/2,v,=—az/2, v,= az,, then
condition (3.6) will be satisfied v (x) = 3a%/4 while L, (v, p) = [0(x, p) — pot + Fa), from which
we find the dual estimate for

m° = sup sup Lo (v, p) = pe* (6, + F* (V300)721(1 + 6p)

Comparing m, and m°, we see that m*< m, for all allowable F, where the dual estimate is
good either for small or for large allowable F. The dual estimate can be improved if (3.9)
is maximized.

4. Dual estimate in problem P. We construct the Lagrange functional
1
L (u» 6, v, P) =§ (T Qujp1€5€x1 + Ga-,»,-,,,si,-x“ —_— (4.1)

vy + pbp—ppo) dz — { Fo dl, Vu,veU, Voe, VpeR
Ty



If the sets © and M in Sec. 3 are replaced, respectively, by the sets ® and R, and
analogous reasoning is presented, then the dual problem

sup Lo (v, ), Vvee U, Vu = R (4.2)
and inequalities analogous to (3.2) can be obtained.
Let us construct the functional L, (v, p). For each fixed v and p the integrand in the

first integral in (4.l) is a strongly convex function of the component eg;, consequently,
the necessary and sufficient condition for the minimum of L with respect to e; 1is

By = —%Kij 4.3)
Substituting (4.3) into (4.1), we obtain

inf L= S ( - %Gaij,,,uiju,,, — v,f; +plp— p.po) dr — S Fup,ar

g ,elq(ﬂ) & fp
from which we f£ind
Lo (v p) = §[w (6, @) — vif; — ppo]dz — § Fp.dr (4.4)
Tr
RO — @y ja%iMx/ 20 B Bigrattign/(20)
Oy p) == 2
1O0p — Bolygi®ikt/2 B 3> @yji%i i/ (2p)

Exactly as in Sec. 3, here [, is independent of intermediate values of 6.

Example. We again examine a cube with edge ¢ loaded on two opposite faces z;=0 and
zy= ¢ by compressive forces of constant intensity F. We set 6 =p,/p, then the corresponding

elastic strain energy equals
Iy, = pelFY(2Ep,)

We now obtain the lower bound by using (4.4). We set v, = 0,v3= 0,vy= azy, & = const, then
only the strain x,=a will be different from zero; L,(v, n) =€ {0 (x, p) — ppo + Fa] £rom which
we find the dual estimate for I, namely

ne = Ly (v, ) = 2
Sup up o (v, 1) = pe*F¥/(2Ep,)

Here II°=1II,, consequently 0 =p/p is the optimal control.
If 9 can take on only the values 6, or 1, then in this case the optimal control is the
sliding mode. A similar solution is obtained in /3/.
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