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APPLICATION OF DUALITY METHODS IN PROBLEf4S OF 
OPTIMIZING THE SHAPE OF ELASTIC BODIES* 

L.V. PETUEBOV and S.I. REPIN 

A method is proposed for obtaining estimates of the magnitude of the 
global extremum in plate and three-dimensional body shape-optimization 
problems. This enables an estimate to be made of the ultimate possibilities 
of optimization. In certain cases, a control is constructed successfully 
for which the values of the objective functional will be close, and 
sometimes even equal, to the magnitude of the global extremum. 

Free vibrations of thin plates m Let there be a domain SE@ with piece- 
wise-820th boundary I'= I'r U I", IJ r,. The frequency 0 of free vibrations of a plate of 
thickness h is given by the following relations: 

o* = min0 (h, 10); CD (k, 10) = n (h, ta)/T (k, W) (1.1) 
WSV 

n (h, w) = 
ii 

Dh+p (2, y) da; T (h, w) = s #up (2, y) cm 

D = E/(12 (I - G)), q~ = w’, ‘Ip :(Azu)' - 2 (1 - v)’ 

* (m rx+%y - d9,“) 
v = {U 1 u E W,a (Q); u = u,~ = 0 on rt, u = 0 on rr) 

Here I is Young's modulus, v is Poisson's ratio, p is the density, w is the deflection, 

21 Y are Cartesian coordinates of a point, and v,,, denotes the derivative along the normal 
to the contour r. The optimization problem is as follows: it is required-to find h* and w* 
such that 

Q, (h*, w')=.~~inJvfD (h, w) (4.2) 

H~{LEL~(CI)IShdBPh,mesn, h~<h=G&} 
0 

h>h>h>O 

where mea P denotes the Lebesgue measure of the domain !& 
It is known that in problems of this kind, the existence of generalized solutions /5,6/ 

is possible in addition to piecewise-smooth solutions /l-4/. moreover, problem (1.2) is 
non-convex; consequently, different numerical algorithms only result in locally optimal 
solutions /7,8/. However, attempts can be made to find the function h=H for which the 
value of the objective functional is less than the supremum by a certain smdl quantity e. 

For this it is necessary to estimate the value of the SUpremUm , as can be done by using the 
dual problem. 

The following problem is called the dual of the original /9/: Find h*, WC such that 

cp(h+,w*) "Zv ml&D (h,w) (1.3) 

The following inequalities are obviously valid 

sn& i$@(h, w) 62s~ Q, (h, w) (1.4) 

and can be used to construct upper bounds for the magnitude of the supremum in problem (1.2). 
we use the notation 

QO = sup Cp (h, IV@), wo E i’ (1.5) 
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Py virtue of (1.3) and (1.4), here Q. is the upper bound. To find Q. it is necessary 
to construct a function ho such that ~(~~,~~) = Qo. 

Assertion 1. The intermediate regime h,<h< h, is impossible in problem (1.5). 

Proof. Let hp = h,(s,y) be the solution of (1.5). We assume that there is a subdomain 

S&C a, mes &>O such that h,<h,<& if (cc,& ~63~. We choose 621,' and Q/ such #at 
Q, = f& U Q<, 01' n 52," = Q,mes S&' = mes S&", and we construct the function he. We set hb puff 

h, inhl \ 8,; hb = h,, - 6 in 51,';hb = h, + 6 in PI" (6 = con&). 
It can be shown that 

If A = 0 then for small 6 the right side of (1.6) is positive. If APO, then by 
selecting &>O or S<O depending on the sign of A, we obtain that the right side of 
(1.6) can be made positive for sufficiently small 6. This contradicts the fact that 6, is a 
solution of (1.5). 

Corollary. We introduce a new control function p fr (hl - h)l(hS-k,)4 (p-i if h=hr 
and p= 0 if h = h,). Then 

Qo=w&W~"o) @.V 

@@* wo)- ~(~~+~)~(~o)~~ x pw9rpfroo)derf 

A = h,*- ht, B = hf, C = h2 - h,, D = h, 

ffere M is the set of functions which can only take values of 0 or 1 at each point of the 
domain 0 and satisfies the isoperimetric condition 

a 
~~+(~-~)~)~~~~a~~ 

Let N denote the closure of the set M in a *-weak topology of the space L,(P) 

~=(PELd-@lO<C~~l (lifil+Ii-p)~~d~~hsmesQ) 

Evidently 

Assertion 2. Problem (1.8) has a solution , i.e., a function ~r,Efl exists on which the 
functional @ achieves its exact upper bound. 

Proof. Let {h} be a maximizing sequence, i.e., @(~,e,)- Q. as A-+ so. It is 
uniformly bounded, consequently, a subsequence can be extracted that is also maximizing and 
convergent to a certain'function poE N in *-weak topology L, /9/. Passing to the limit 
in (1.8), we have @(&,,w,)-@ (P~.u~),TZ+ CO, from which there follows that @(~o,luo) = Qo. 

Assertion 3. The function ~0 that yields a maximum of the functional @&la,) takes 
only the two values 0 and 1, where if &,8r are, respectively, the subdomains where p,, =0 
and po=l, then 

R (2, Y) 2 R (Et ?). V (5, I) E RI, V (&, ?) E Qo (1.9) 

R (~7 4 = 9 fu, 4 - Qov (u, +‘fhxe + h&s + hF) 

The proof that p. does not take on intermediate values is analogous to the proof of 
Assertion 1. 

We consider two sequences of subdomains {ok+) E Q,,{o~-) E $2,; mes w&+ = mes oB-(k = 1,2, ,,.), 
where 

ok+ EE fl(G Y, I$). 08-E 8 (F;, tl~ Pn), Pk - 0, k -* OQ 

S 04 v, f-4 = G. l4 E SJ I (2 - 4” + (br - 4’ Q p’) 

We construct the sequence of controls 
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If po is a solution of problem (1.8), the inequality 

should be satisfied 

CJ, (PO, wo) - Q, h wo) > 0 
for any k, from which it follows that 

(1.10) 

(L is a linear function of its arguments). Dividing both sides of inequality (1.10) by 
mss my+ and passing to the limit as k+ oo, we obtain (1.9). 

Remark. Ineguality (1.9) enables us to construct the function p,,. He choose a certain 
value of Q, we substitute it into (1.9) in place of Qo, and we construct a corresponding 
function p. We calculate Q* - @ (Ce 4: Q. corresponds to the greatast of those values of 
Q for which Q-Q*, and can be found by standard methods for finding the roots of 

transcendental equations. 

Examples. We consider a rectangular plate with sides a andb, and let b-- h(r). The 
sides y=O,b of the plate are freely supported, while z==0,(1 are free. Problem (1.1) is 
reduced to the following 

o' = inf Q, (h, P); ‘3 (h, F) =a lT/T (1.11) 

n=&¶P - a*mmP+2m&P)dt, T = 
! 
h&%x 

P 
,-=Du(P'-s*F), rn,, = DV (VP” -‘aV), ml11 = Db* (1 - v)P’ 

II = {u e IF,* [O, 511 P (0) = s(a) = O), a = nn/b 

It is necessary to find a quantity SeiIi, such that 

Using (1.9) we obtain the following estimate of the supremum [a = b= 1): 

Q. = s4 (@ -t- hf f h,h, - k,*h, - ‘%.vf 

It turns out that elements exist in the set H, for whichthevalue of the objective 
functional is close to Qe. To show this, the formulation of problem (1.12) must be altered 
somewhat. As already mentioned, problem (1.12) may not even have a solution. To eliminate 
this singularity, it is necessary to perform a G-closure of the boundary value problem (1.11) 

/lO/. Therefore, a new expanded (relaxation) problemof optimization can be constructed 
whose solution exists and can be approximated to the functional with any degree of accuracy 
by elements of the original set ii,. If we limit ourselves to an examination of controls 
taking on just two values h, and h, then the G-closure of (1.11) results in the following 
variational problem 

C 
o* = inf ‘(D (5, F): @ (A, F) := II 1s (Rh, _C (1 - b) /I$) F* dz]-l (1.13) 

0 
m, = b, (F” - a%‘), ntle = 2&,,F', mtr = vb,,F” - aab,,F 

brL = Dh&s [Bh,s -+- (1 - 1) IL~')-'~ b,, = O(l -Y) (AhP -f- (I --L) h?*) 

b,, = (1 f v)b,, -t- +b,, 

The expanded optimization problem is to seek a &EN such that 

02 (1,) = ;$"" (1) (1.14) 

Here I is a new control function which is related to h as follows. If X=i in a 

certain interval &=[q, t,+ Al, then h (I) = h,, ZE DI; if h(z)=O, then h(t) = kd I e D,, 
if I = 0.5, say, then this corresponds to an infinitely frequent uniform alternation of the 
thicknesses h, and h,. 
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To obtain the lower bound of the supremum we take a certain value A(Z)= A and solve 
problem (1.13). We set 5 (3) = 0.5. We calculate the corresponding value of the frequency 

0.. We let oP denote the frequency for a constant thickness plate of the same weight, and 
let a=b=i,h,=i. Then for IL, = 0.7 and h, = 1.3, we have oJop = 1.12, Q~/o~ = 1.18; for h, = 0.5, 
h, = 1.5 we have o,leP = 1.30, pO/eP = 1.38, and for h,= 0.3, h, = 1.7 we have O./O, = 154, qdi+ = 1.65, 
where qa = 65. It is seen that values of the gains are fairly close to the upper bound of 
the supremum. 

We examine the following sequence of controls (hk) E H,, k = 1, 2, . .., h = h, if zE](i-l)A, 
id); h = h,. if s E [iA, (if i)A), A = Ilk, i = 1,2, . . ., k - 1. We let Ok denote the value of the 
frequency corresponding to the function hk. By virtue of the properties of the expanded 
problem, we have Ok- 0. as k -.m. Hence, for sufficiently large k the ratio ek/ep iS 
close to o,:op while the value of the objective functional for the control hkEHt is close 
to the magnitude of the global supremum. 

Analogous estimates can be obtained in other problems also, when the control depends on 

one coordinate. For instance, we consider a long rectangular plate (a>,) with freely sup- 
ported edges and we let h= h(z). As wg we select the function 

I 
.x.7 

siur, s<z 

w. = F(z)sinay; F(2) = I, z < z<a - z 

I x(b--1) 
sin -, z&a-z 

In this case 

Q,, _ h? [It-;'/rz-e]~ - 2h1a + a [h,” + h?z + h,h:. - hl’h, _&h,‘] z-l 
-- 
OPL h, - 2ha + a8 

o*= bl,o=b-= + 2 (vb,n + b,?) + bsb’a+ -_ 
up” - 42 (ba-’ + ab-‘)* 

For instance, for h, = 0.5. h, = 1.5, h, = 1.0, b/a = 20 we obtain QOloPz = 2.28, !+yo,' = 1.61, and 
era/Q0 = 0.71. Therefore, the value of the frequency obtained is not less than 84% of the 
upper bound. The problem can also be considered for an annular plate of radii I and R(R>r) 
when the thickness-depends only on the angular coordinate a. 
0.7 d- 0.8 a plate with uniformly arranged radial ribs will also 
globally optimal one. 

It turns out that for r/R 7 
ensure a solution close to the 

In two-dimensional problems, when h= h(z, I), inequality 
of h, and calculation of Q0 for a given function og. Thus, 
case when 4 = 0.5, h, = 1.5, h, = 1 (all sides of a square plate 
have QdoP* = 1.45 for h, = 0.7, h, = 1.3, h, = 1.0. 

(1.9) permits rapid construction 
QdUpa= 2.21 is obtained for the 
freely supported), while we 

Therefore, the upper boundary of the magnitude of the parameter being optimized can .be 
established at once. It should be kept in mind that the estimate obtained by such a method 
can turn out to be quite excessive either because of the unsuccessful choice of w, or because 
of the presence of an unavoidable gap between the direct and dual problems in inequality (1.4). 

2. Formulation of optimization problems for a three-dimensional elastic 
medium. Let the domain 0~ RS be filled by an elastic medium consisting of two materials 
that are characterized by the elastic constant tensors &z=(~u,~,,), the densities 6p, and the 
torsion yield points Boo, where 9 = &,>O @,<I) or 8 = 1. Here and everywhere later, 
the Roman subscripts run through the values 1 - 3. The body force vector f(z) = {fi (5)) is 
given in the domain !J, where z = {xi) are Cartesian coordinates of the points in n. We 
consider the boundary of 9, which we shall denote by I', as consisting of two parts I?, 
and rF (I' = ru U r,), where the displacement vector u = {ui) = 0 is given on the former, and 
the surface loads vector F = V'I) on the latter. The quantities ailklr p, rs,,, e0 are assumed 
to be independent of the coordinates x1. 

We expand the initial formulation of the problem somewhat. We assume that there is a 
hypothetical inhomogeneous elastic medium for which O< e. < 8 (x)< 1. 

We now specify the quantities introduced above. Let B be an intrinsically regular 
domain /ll/. We introduce the sets 

e = 09 E L, (8) I 0 < eO G 8 (4 Q 1) 
V = {U I u1 E Hl (9), 24 = 0 on r,) 

where H'(Q) is the S.L. Sobolev space /12/. We will assume that 

For any fixed 9 E 0 the displacement uf V of the points of D is governed by the 
integral identity /12/ 



604 

~(eU~j~le~j%k~-V~fi)dX- S FiV,dr=O 
ra 

Eij = (Qt. j f Uj, i)/Z VV E Uv xkl= (uk, 1 + VI, k)/2 

(2.1) 

where e =I {q~}, x = {xn} are strain tensors (*), t is the derivative with respect to the 
coordinate xi, summation between 1 and 3 is assumed over the repeated subscripts here and 
everywhere later. If the solution u is found, then the stress tensor u = (at,} = @all,&} 
can be determined. 

The constraint b~~k,a~pk,<W%~P on the stress for almost all XEQ is oftenencountered 
in optimal design problems, from which a constraint on the strain evidently results 

cljPleffekt < %’ (2.21 

for almost all z E $2, where b = {bljk.},c = {cijkl) are tensors determining the invariants in 
the constraints on the stress and strain, 

Ctjkl = bpw,wwekm. 

We will now formulate two optimal control problems: the problem of minimizing the mass 
of material under constraints on the stress (problem WI 

inf 0pdx 
1 

(2.3) 

for VB=8, Vu= U satisfying (2.1) and (2.21, and the problem of minimizing the elastic 
strain energy under constraints on the material mass (problem P) 

inf 
i 

+ %jk&jekl dx (2.4) 

for VuEU satisfying the equality (2.1) and 

ve866= {eEeI~Rpdx=p.~42. eo<po/p<i} 

3. Dual estimate in problem W. We construct the Lagrange functional 

~(22, 8, V. v)- 
% 

top + eatjkleijxkl + CL’Ajkt%jEk, - 

vifi - puo”) as - 1 FividI’, Vult,v~U, V~'BE@ 

Vr~x~EM=(CfFLa(P)iII~O) 

We examine two extremal problems for the functional L. 
The first 

inf L” (~,e), VUE U, QB E 8; L" (u, 0) = sup L, VVE U, VP EM 

is equivalent to problem W. 
The second 

sup L, (v, p), Vu E U, Vy E M; L, (v, p) = inf L, Qetf E L, (a), ‘~‘6 E 8 
is the dual to problem W and can be used for the lower bound of the value (2.3) 

Indeed, from the evident inequalities 

(3.1) 

(3.2) 

it follows that the value of L,,(u, p) yields the lower bound for (2.31. 
We will now construct the functional L, (v, p). For each fixed v and p the integrand in 

the first integral in (3.1) is a convex function of &ii, hence, it is necessary to minimize 
the function 

'p(e) EpcijkZ@ijEkl + %jklEijxkf 

In the general case the tensor pc is not positive-definite, but only positive, 
consequently, the necessary and sufficient condition for a minimum 

Z~LCijSIEkl f 8aijtilxxl = 0, VU E Uv VP EZ M 

cannot possibly be solved directly for Ed,. 
In fact, we examine the constraint on the shear stress intensity (the Mises yield 

condition) /13/ for an isotropic material as the strength condition. Then 

'p (E) = 4G*p [(El, - Ed2 + (Em - %a)* + (em - %I)’ + 

(3.3) 

(3.4) 



605 

Conditions (3.3) for (3.4) take the following expanded form 

(3.5) 

from which it follows that if xI1 + xl,+ xrr+O, then inf,cp(e) = -00, as is achieved for 
en = e,, = eJIl = &CO. Therefore, the function q(e) only takes finite values under the condition 

x11 + %I + %9 = 0 (3.6) 

Under condition (3.6) the solution (3.5) can be found in the form 

where D is an arbitrary constant. Substituting (3.7) into (3.4) and taking (3.6) into account, 
we obtain 

inf, q (e) = $ I$ (x11 - X,# + + (xer - Kd + (3.8) 

+- (%I) - x11)* - $1 _&-~~_~~z-&.-& 1 s - $W 
$ (4 = 41klXifXkl 

Analysis shows that the tensor d={dflkl} is positive-definite. At points at which p = 0 
the function cp (e) degenerates into a linear function and infcp(e) = -00, VQ,EL,(O). 

We substitute (3.8) into (3.1), then 

inf L= 
SF 9P- Ei,%(P) e 

$P(x) -vJ+K+z- 5 FividI' 
rF 

(3.9) 

For fixed v and :_ the value of L,(v,p) yields a lower bound of the infimum of the 
initial problem (see the inequalities (3,2)). To improve this estimate, (3.9) should be 
maximized. The functional (3.9) is independent of the value 9 > e0 and 8 < 1, therefore, the 
presence of two materials with 0 = &,and 6 = 1 could be assumed in Sec. 2. 

Example. We consider a cube with edge c loaded on two opposite faces +=O and z$=e 
by compressive forces of constant intensity F, which satisfies the inequalities &,< F(1/8o,)-1< 
1 obtained from the equal-strength condition in the sense of the Mises condition /3/ for 
e = 8, and O= i. The optimal control and the corresponding mass of the material are 

0 = F (f30,,-', mO = peSF(flu,)-' 

We now obtain the lower bound by using (3.9). We set v,=-az,/2,u,=-a~,/:!, u,= a+, then 
condition (3.6) will be satisfied o(x)= 3aY4 while L, (v, p)=Z lo@, p)- coo* + For], from which 
we find the dual estimate for 

m0 = sup SUP L, (v, p) = p,r le, 3 Fs (1/3o,)-*l(i + eo)-l 
PX aat 

Comparing *I@ and ma, we see that me< m, for all allowable F, where the dual estimate is 
good either for small or for large allowable F. The dual estimate can be improved if (3.9) 
is maximized. 

4. Dual estimate in FrOblem P. We construct the Lagrange functional 

L(u,~, V, PI= 

J 

cf %jkreijeki + hjk$ij%kl- 

V,fi + pep - ppo) dz - s F,v, a9 vu, v E u, ve E 4, vp E R 
rF 

(4.1) 
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If the sets 8 and M in Sec. 3 are replaced, respectively, by the sets 6 and R, and 
analogous reasoning is presented, then the dual problem 

sup L, (v, p), VVE u, Vlr. E R (4.2) 

and inequalities analogous to (3.2) can be obtained. 
Let us construct the functional L,(v,p). For each fixed v and B the integrand in the 

first integral in (4.1) is a strongly convex function of the component ell, consequently, 
the necessary and sufficient condition for the minimum of L with respect to ~;f is 

efj = -xjf 

Substituting (4.3) into (4.1), we obtain 

(4.3) 

from which we find 

0(x* PI== 
( 

VP - aijklxijnkl12v P Q %jklxijxkllt2P) 

@Op - %%jkl%jxkd21 p 2 ai jk?i jXkl/@) 

Exactly as in Sec. 3, here Lo is independent of intermediate values of 6. 

Example. We again examine a cube with edge e loaded on two opposite faces z8= 0 and 
II = c by compressive forces of constant intensity F. We set 8 = p$p, then the corresponding 
elastic strain energy equals 

II, = pew(2Bp,) 

We now obtain the lower bound by using (4.4). We set u1 = O,V, = O,V, = a~~, Q = con& then 
only the strain x8. = a will be different from zero; L,(v. p) =.Z[o(x, p) - ppa+ Fal from which 
we find the dual estimate for II,, namely 

I-l@ =$ 
f: 
ml&Lo (v, p) = pcJF'l(ZEp,) 

Here W = II,, consequently 0 = pJp is the optimal control. 
If 0 can take on only the values B. or 1, then in this case the optimal control is 

sliding mode. A similar solution is obtained in /3/. 
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